AskDefine | Define gasoline

Dictionary Definition

gasoline n : a volatile flammable mixture of hydrocarbons (hexane and heptane and octane etc.) derived from petroleum; used mainly as a fuel in internal-combustion engines [syn: gasolene, gas, petrol]

User Contributed Dictionary



gas + ol(e) + chemical suffix -ine


  • a UK /ˈgæs.ə.lɪin/ /"g

Extensive Definition

Gasoline (gas) or petroleum spirit (petrol) is a petroleum-derived liquid mixture consisting mostly of aliphatic hydrocarbons, enhanced with iso-octane or the aromatic hydrocarbons toluene and benzene to increase its octane rating, and is primarily used as fuel in internal combustion engines.
Most Commonwealth countries or former Commonwealth countries (with the exception of Canada) use the term "petrol" (abbreviated from petroleum spirit). The term "gasoline" is commonly used in North America where it is often shortened in colloquial usage to "gas." This should be distinguished in usage from genuinely gaseous fuels used in internal combustion engines such as liquefied petroleum gas (which is stored pressurised as a liquid but is allowed to return naturally to a gaseous state before combustion).
The term mogas, short for motor gasoline, distinguishes automobile fuel from aviation gasoline, or avgas. The word "gasoline" can also be used in British English to refer to a different petroleum derivative historically used in lamps, but this use is now uncommon.


Gasoline is a mixture of hydrocarbons, although some may contain significant quantities of ethanol and some may contain small quantities of additives such as methyl tert-butyl ether as anti-knock agents to increase the octane rating. The hydrocarbons consist of a mixture of n-paraffins, naphthenes, olefins and aromatics. Naphthenes, olefins and aromatics increase the octane rating of the gasoline whereas the n-paraffins have the opposite effect.

Early uses

Before gasoline was used as fuel for engines, it was sold in small bottles as a treatment against lice and their eggs. At that time, the word Petrol was a trade name. This treatment method is no longer common, because of the inherent fire hazard and the risk of dermatitis.
In the U.S., gasoline was also sold as a cleaning fluid to remove grease stains from clothing. Before dedicated filling stations were established, early motorists would buy gasoline in cans to fill their tanks.
The name gasoline is similar to that of other petroleum products of the day, most notably petroleum jelly, a highly purified heavy distillate, which was branded Vaseline. The trademark Gasoline, however, was never registered, and thus became generic. Gasoline was also used in kitchen ranges and for lighting, and is still available in a highly purified form, known as camping fuel or white gas, for use in lanterns and portable stoves.
During the Franco-Prussian War (1870–1871), pétrole was stockpiled in Paris for use against a possible German-Prussian attack on the city. Later in 1871, during the revolutionary Paris Commune, rumours spread around the city of pétroleuses, women using bottles of petrol to commit arson against city buildings.


The word "gasolene" was coined in 1865 from the word gas and the chemical suffix -ine/-ene. The modern spelling was first used in 1871. The shortened form "gas" was first recorded in American English in 1905. Gasoline originally referred to any liquid used as the fuel for a gasoline-powered engine, other than diesel fuel or liquefied gas; methanol racing fuel would have been classed as a type of gasoline.
The word "petrol" was first used in reference to the refined substance as early as 1892 (it was previously used to refer to unrefined petroleum), and was registered as a trade name by British wholesaler Carless, Capel & Leonard at the suggestion of Frederick Richard Simms. Although it was never officially registered as a trademark, Carless's competitors used the term "Motor Spirit" until the 1930s. It has also been suggested that the word was coined by Edward Butler in 1887.
In Germany and some other European countries, gasoline is called Benzin (German and Danish), Bensin (Swedish and Norwegian), Benzyna (Polish), Benzină (Romanian), Бензин (Russian), and other variants of this word. The usage does not derive from Bertha Benz, who used chemist shops to purchase the gasoline for her famous drive from Mannheim to Pforzheim in 1888, but from the chemical benzene.

Chemical analysis and production

Gasoline is produced in oil refineries. Material that is separated from crude oil via distillation, called virgin or straight-run gasoline, does not meet the required specifications for modern engines (in particular octane rating; see below), but will form part of the blend.
The bulk of a typical gasoline consists of hydrocarbons with between 5 and 12 carbon atoms per molecule.
Many of these hydrocarbons are considered hazardous substances and are regulated in the United States by Occupational Safety and Health Administration. The Material Safety Data Sheet for unleaded gasoline shows at least fifteen hazardous chemicals occurring in various amounts. These include benzene (up to 5% by volume), toluene (up to 35% by volume), naphthalene (up to 1% by volume), trimethylbenzene (up to 7% by volume), MTBE (up to 18% by volume) and about 10 others.
The various refinery streams blended together to make gasoline all have different characteristics. Some important streams are:
  • Reformate, produced in a catalytic reformer with a high octane rating and high aromatic content, and very low olefins (alkenes).
  • Cat Cracked Gasoline or Cat Cracked Naphtha, produced from a catalytic cracker, with a moderate octane rating, high olefins (alkene) content, and moderate aromatics level. Here, "cat" is short for "catalytic".
  • Hydrocrackate (Heavy, Mid, and Light), produced from a hydrocracker, with medium to low octane rating and moderate aromatic levels.
  • Virgin or Straight-run Naphtha (has many names), directly from crude oil with low octane rating, low aromatics (depending on the crude oil), some naphthenes (cycloalkanes) and no olefins (alkenes).
  • Alkylate, produced in an alkylation unit, with a high octane rating and which is pure paraffin (alkane), mainly branched chains.
  • Isomerate (various names) which is obtained by isomerising the pentane and hexane in light virgin naphthas to yield their higher octane isomers.
(The terms used here are not always the correct chemical terms. They are the jargon normally used in the oil industry. The exact terminology for these streams varies by refinery and by country.)
Overall a typical gasoline is predominantly a mixture of paraffins (alkanes), naphthenes (cycloalkanes), and olefins (alkenes). The exact ratios can depend on
  • the oil refinery that makes the gasoline, as not all refineries have the same set of processing units.
  • the crude oil feed used by the refinery.
  • the grade of gasoline, in particular the octane rating.
Currently many countries set tight limits on gasoline aromatics in general, benzene in particular, and olefin (alkene) content. This is increasing the demand for high octane pure paraffin (alkane) components, such as alkylate, and is forcing refineries to add processing units to reduce the benzene content.
Gasoline can also contain some other organic compounds: such as organic ethers (deliberately added), plus small levels of contaminants, in particular sulfur compounds such as disulfides and thiophenes. Some contaminants, in particular thiols and hydrogen sulfide, must be removed because they cause corrosion in engines. Sulfur compounds are usually removed by hydrotreating, yielding hydrogen sulfide which can then be transformed into elemental sulfur via the Claus process.


Gasoline is more volatile than diesel oil, Jet-A or kerosene, not only because of the base constituents, but because of the additives that are put into it. The final control of volatility is often achieved by blending with butane. The Reid Vapor Pressure test is used to measure the volatility of gasoline. The desired volatility depends on the ambient temperature: in hotter climates, gasoline components of higher molecular weight and thus lower volatility are used. In cold climates, too little volatility results in cars failing to start. In hot climates, excessive volatility results in what is known as "vapour lock" where combustion fails to occur, because the liquid fuel has changed to a gaseous fuel in the fuel lines.
In the United States, volatility is regulated in large urban centers to reduce the emission of unburned hydrocarbons. In large cities, so-called reformulated gasoline that is less prone to evaporation, among other properties, is required. In Australia summer petrol volatility limits are set by State Governments and vary between capital cities. Most countries simply have a summer, winter and perhaps intermediate limit.
Volatility standards may be relaxed (allowing more gasoline components into the atmosphere) during emergency anticipated gasoline shortages. For example, on 31 August 2005 in response to Hurricane Katrina, the United States permitted the sale of non-reformulated gasoline in some urban areas, which effectively permitted an early switch from summer to winter-grade gasoline. As mandated by EPA administrator Stephen L. Johnson, this "fuel waiver" was made effective through 15 September 2005. Though relaxed volatility standards may increase the atmospheric concentration of volatile organic compounds in warm weather, higher volatility gasoline effectively increases a nation's gasoline supply because the amount of butane in the gasoline pool is allowed to increase.

Octane rating

see details octane rating An important characteristic of gasoline is its octane rating, which is a measure of how resistant gasoline is to the abnormal combustion phenomenon known as detonation (also known as knocking, pinging, spark knock, and other names). Deflagration is the normal type of combustion. Octane rating is measured relative to a mixture of 2,2,4-trimethylpentane (an isomer of octane) and n-heptane. There are a number of different conventions for expressing the octane rating; therefore, the same fuel may be labeled with a different number, depending upon the system used.

World War II and octane ratings

During World War II, Germany received much of its oil from Romania. From in 1938, Romania’s exports to Germany increased to by 1941, a level that was essentially maintained through 1942 and 1943, before dropping by half, due to Allied bombing and mining of the Danube. Although these exports were almost half of Romania’s total production, they were considerably less than what the Germans expected. Even with the addition of the Romanian deliveries, overland oil imports after 1939 could not make up for the loss of overseas shipments. In order to become less dependent on outside sources, the Germans undertook a sizable expansion program of their own meager domestic oil pumping. After 1938, the Austrian oil fields were made available, and the expansion of Nazi crude oil output was chiefly concentrated there. Primarily as a result of this expansion, the Reich's domestic output of crude oil increased from approximately in 1938 to almost in 1944. Even this was not enough.
Instead, Germany had developed a synthetic fuel capacity that was intended to replace imported or captured oil. Fuels were generated from coal, using either the Bergius process or the Fischer-Tropsch process. Between 1938 and 1943, synthetic fuel output underwent a respectable growth from to 36 million. The percentage of synthetic fuels compared with the yield from all sources grew from 22 percent to more than 50 percent by 1943. The total oil supplies available from all sources for the same period rose from in 1938 to in 1943.
By the early 1930s, automobile gasoline had an octane reading of 40 and aviation gasoline of 75-80. Aviation gasoline with such high octane numbers could only be refined through a process of distillation of high-grade petroleum. Germany’s domestic oil was not of this quality. Only the additive tetra-ethyl lead could raise the octane to a maximum of 87. The license for the production of this additive was acquired in 1935 from the American holder of the patents, but without high-grade Romanian oil even this additive was not very effective. 100 octane fuel, designated either 'C-2' (natural) or 'C-3' (synthethic) was introduced in late 1939 with the Daimler-Benz DB 601N engine, used in certain of the Luftwaffe`s Bf 109E and Bf 109F single-engined fighters, Bf 110C twin-engined fighters, and several bomber types. Some later combat types, most notably the BMW 801D-powered Fw 190A, F and G series, and later war Bf 109G and K models, used C-3 as well. The nominally 87 octane aviation fuel, designated 'B-4' was produced in parallel during the war.
In the US the oil was not "as good," and the oil industry had to invest heavily in various expensive boosting systems. This turned out to have benefits: the US industry started delivering fuels of increasing octane ratings by adding more of the boosting agents, and the infrastructure was in place for a post-war octane-agents additive industry. Good crude oil was no longer a factor during wartime, and by war's end, American aviation fuel was commonly 130 octane, and 150 octane was available in limited quantities for fighters from the summer of 1944. This high octane could easily be used in existing engines to deliver much more power by increasing the pressure delivered by the superchargers.
In late 1942, the Germans increased to octane rating of their high-grade 'C-3' aviation fuel to 150 octane. The relative volumes of production of the two grades B-4 and C-3 cannot be accurately given, but in the last war years perhaps two-thirds of the total was C-3. Every effort was being made toward the end of the war to increase isoparaffin production; more isoparaffin meant more C-3 available for fighter plane use.
A common misapprehension exists concerning wartime fuel octane numbers. There are two octane numbers for each fuel, one for lean mix and one for rich mix, rich being greater. The misunderstanding that German fuels had a lower octane number (and thus a poorer quality) arose because the Germans quoted the lean mix octane number for their fuels while the Allies quoted the rich mix number. Standard German high-grade 'C-3' aviation fuel used in the later part of the war had lean/rich octane numbers of 100/130. The Germans would list this as a 100 octane fuel while the Allies would list it as 130 octane.
After the war the US Navy sent a Technical Mission to Germany to interview German petrochemists and examine German fuel quality. Their report entitled “Technical Report 145-45 Manufacture of Aviation Gasoline in Germany” chemically analyzed the different fuels, and concluded that “Toward the end of the war the quality of fuel being used by the German fighter planes was quite similar to that being used by the Allies.”

Energy content

Gasoline contains about 34.6 megajoules per liter(MJ/L) or 131 MJ/US gallon. In kWh terms, this is 9.6 kWh per liter or 43.6 kWh per UK gallon. This is an average; gasoline blends differ, therefore actual energy content varies from season to season and from batch to batch, by as much as 4% more or less than the average, according to the US EPA. On average, about 19.5 gallons of gasoline are available from a 42 gallon barrel of crude oil, varying due to quality of crude and grade of gasoline. The remaining residue comes off as products ranging from tar to naptha
Volumetric energy density of some fuels compared with gasoline:
(*) Diesel is not used in a gasoline engine, so its low octane rating is not an issue; the relevant metric for diesel engines is the cetane number
A high octane fuel such as Liquefied petroleum gas (LPG) has a lower energy content than lower octane gasoline, resulting in an overall lower power output at the regular compression ratio an engine ran at on gasoline. However, with an engine tuned to the use of LPG (ie. via higher compression ratios such as 12:1 instead of 8:1), this lower power output can be overcome. This is because higher-octane fuels allow for a higher compression ratio - this means less space in a cylinder on its combustion stroke, hence a higher cylinder temperature which improves efficiency according to Carnot's theorem, along with fewer wasted hydrocarbons (therefore less pollution and wasted energy), bringing higher power levels coupled with less pollution overall because of the greater efficiency.
The main reason for the lower energy content (per litre) of LPG in comparison to gasoline is that it has a lower density. Energy content per kilogram is higher than for gasoline (higher hydrogen to carbon ratio). The weight-density of gasoline is about 737.22 kg/m³.
Different countries have some variation in what RON (Research Octane Number) is standard for gasoline, or petrol. In the UK, ordinary regular unleaded petrol is 91 RON (not commonly available), premium unleaded petrol is always 95 RON, and super unleaded is usually 97-98 RON. However both Shell and BP produce fuel at 102 RON for cars with hi-performance engines, and the supermarket chain Tesco began in 2006 to sell super unleaded petrol rated at 99 RON. In the US, octane ratings in fuels can vary between 86-87 AKI (91-92 RON) for regular, through 89-90 (94-95) for mid-grade (European Premium), up to 90-94 (RON 95-99) for premium unleaded or E10 (Super in Europe)



The mixture known as gasoline, when used in high compression internal combustion engines, has a tendency to autoignite(detonation) causing a damaging "engine knocking" (also called "pinging" or "pinking") noise. Early research into this effect was led by A.H. Gibson and Harry Ricardo in England and Thomas Midgley and Thomas Boyd in the United States. The discovery that lead additives modified this behavior led to the widespread adoption of the practice in the 1920s and therefore more powerful higher compression engines. The most popular additive was tetra-ethyl lead. However, with the discovery of the environmental and health damage caused by the lead, and the incompatibility of lead with catalytic converters found on virtually all newly sold US automobiles since 1975, this practice began to wane (encouraged by many governments introducing differential tax rates) in the 1980s. Most countries are phasing out leaded fuel; different additives have replaced the lead compounds. The most popular additives include aromatic hydrocarbons, ethers and alcohol (usually ethanol or methanol).
In the U.S., where lead was blended with gasoline (primarily to boost octane levels) since the early 1920s, standards to phase out leaded gasoline were first implemented in 1973. In 1995, leaded fuel accounted for only 0.6 % of total gasoline sales and less than 2,000 short tons of lead per year. From January 1, 1996, the Clean Air Act banned the sale of leaded fuel for use in on-road vehicles. Possession and use of leaded gasoline in a regular on-road vehicle now carries a maximum $10,000 fine in the United States. However, fuel containing lead may continue to be sold for off-road uses, including aircraft, racing cars, farm equipment, and marine engines. The ban on leaded gasoline led to thousands of tons of lead not being released in the air by automobiles. Similar bans in other countries have resulted in lowering levels of lead in people's bloodstreams.
A side effect of the lead additives was protection of the valve seats from erosion. Many classic cars' engines have needed modification to use lead-free fuels since leaded fuels became unavailable. However, "Lead substitute" products are also produced and can sometimes be found at auto parts stores.
Gasoline, as delivered at the pump, also contains additives to reduce internal engine carbon buildups, improve combustion, and to allow easier starting in cold climates.
In some parts of South America, Asia, Eastern Europe and the Middle East, leaded gasoline is still in use. Leaded gasoline was phased out in sub-Saharan Africa effective 1 January, 2006. A growing number of countries have drawn up plans to ban leaded gasoline in the near future.


Methylcyclopentadienyl manganese tricarbonyl (MMT) has been used for many years in Canada and recently in Australia to boost octane. It also helps old cars designed for leaded fuel run on unleaded fuel without need for additives to prevent valve problems.
US Federal sources state that MMT is suspected to be a powerful neurotoxin and respiratory toxin, and a large Canadian study concluded that MMT impairs the effectiveness of automobile emission controls and increases pollution from motor vehicles.
In 1977, use of MMT was banned in the US by the Clean Air Act until the Ethyl Corporation could prove that the additive would not lead to failure of new car emissions-control systems. As a result of this ruling, the Ethyl Corporation began a legal battle with the EPA, presenting evidence that MMT was harmless to automobile emissions-control systems. In 1995, the U.S. Court of Appeals ruled that the EPA had exceeded its authority and, as a result, MMT became a legal fuel additive in the US. MMT is nowadays manufactured by the Afton Chemical Corporation division of Newmarket Corporation.


In the United States, ethanol is sometimes added to gasoline but sold without an indication that it is a component. Chevron, 76, Shell, and several other brands market ethanol-gasoline blends.
In several states, ethanol is added by law to a minimum level which is currently 5.9%. Most fuel pumps display a sticker stating that the fuel may contain up to 10% ethanol, an intentional disparity which allows the minimum level to be raised over time without requiring modification of the literature/labeling. The bill which was being debated at the time the disclosure of the presence of ethanol in the fuel was mandated has recently passed. This law (Energy Bill 2005) will require all auto fuel to contain at least 10% ethanol. Many call this fuel mix gasohol.
In the EU, 5% ethanol can be added within the common gasoline spec (EN 228). Discussions are ongoing to allow 10% blending of ethanol. Most countries (fuel distributors) today do not add so much ethanol. Most gasoline (petrol) sold in Sweden has 5% ethanol added.
In Brazil, the Brazilian National Agency of Petroleum, Natural Gas and Biofuels (ANP) requires that gasoline for automobile use has 23% of ethanol added to its composition.


In the United States the most commonly used aircraft gasoline, avgas, or aviation gas, is known as 100LL (100 octane, low lead) and is dyed blue. Red dye has been used for identifying untaxed (non-highway use) agricultural diesel. The UK uses red dye to differentiate between regular diesel fuel, (often referred to as DERV), which is undyed, and diesel intended for agricultural and construction vehicles like excavators and bulldozers. Red diesel is still occasionally used on HGVs which use a separate engine to power a loader crane. This is a declining practice however, as many loader cranes are powered directly by the tractor unit.

Oxygenate blending

Oxygenate blending adds oxygen to the fuel in oxygen-bearing compounds such as MTBE, ETBE and ethanol, and so reduces the amount of carbon monoxide and unburned fuel in the exhaust gas, thus reducing smog. In many areas throughout the US oxygenate blending is mandated by EPA regulations to reduce smog and other airborne polutants. For example, in Southern California, fuel must contain 2% oxygen by weight, resulting in a mixture of 5.6% ethanol in gasoline. The resulting fuel is often known as reformulated gasoline (RFG) or oxygenated gasoline. The federal requirement that RFG contain oxygen was dropped May 6, 2006 because the industry had developed VOC-controlled RFG that did not need additional oxygen.
MTBE use is being phased out in some states due to issues with contamination of ground water. In some places it is already banned. Ethanol and to a lesser extent the ethanol derived ETBE are a common replacements. Especially since ethanol derived from biomatter such as corn, sugar cane or grain is frequent, this will often be referred to as bio-ethanol. A common ethanol-gasoline mix of 10% ethanol mixed with gasoline is called gasohol or E10, and an ethanol-gasoline mix of 85% ethanol mixed with gasoline is called E85. The most extensive use of ethanol takes place in Brazil, where the ethanol is derived from sugarcane. In 2004, over 3,400 million US gallons (13,000,000 m³) of ethanol was produced in the United States for fuel use, mostly from corn, and E85 is slowly becoming available in much of the United States. Unfortunately many of the relatively few stations vending E85 are not open to the general public. The use of bioethanol, either directly or indirectly by conversion of such ethanol to bio-ETBE, is encouraged by the European Union Directive on the Promotion of the use of biofuels and other renewable fuels for transport. However since producing bio-ethanol from fermented sugars and starches involves distillation, ordinary people in much of Europe cannot ferment and distill their own bio-ethanol at present (unlike in the US where getting a BATF distillation permit has been easy since the 1973 oil crisis.)

Health concerns

Many of the non-aliphatic hydrocarbons naturally present in gasoline (especially aromatic ones like benzene), as well as many anti-knocking additives, are carcinogenic. Because of this, any large-scale or ongoing leaks of gasoline pose a threat to the public's health and the environment, should the gasoline reach a public supply of drinking water. The chief risks of such leaks come not from vehicles, but from gasoline delivery truck accidents and leaks from storage tanks. Because of this risk, most (underground) storage tanks now have extensive measures in place to detect and prevent any such leaks, such as sacrificial anodes. Gasoline is rather volatile (meaning it readily evaporates), requiring that storage tanks on land and in vehicles be properly sealed. The high volatility also means that it will easily ignite in cold weather conditions, unlike diesel for example. Appropriate venting is needed to ensure the level of pressure is similar on the inside and outside. Gasoline also reacts dangerously with certain common chemicals.
Gasoline is also one of the sources of pollutant gases. Even gasoline which does not contain lead or sulfur compounds produces carbon dioxide, nitrogen oxides, and carbon monoxide in the exhaust of the engine which is running on it. Furthermore, unburnt gasoline and evaporation from the tank, when in the atmosphere, react in sunlight to produce photochemical smog. Addition of ethanol increases the volatility of gasoline.
Through misuse as an inhalant, gasoline also contributes to damage to health. Petrol sniffing is a common way of obtaining a high for many people and has become epidemic in some poorer communities and indigenous groups in America, Australia, Canada, New Zealand and some Pacific Islands. In response, Opal fuel has been developed by the BP Kwinana Refinery in Australia, and contains only 5% aromatics (unlike the usual 25%) which inhibits the effects of inhalation.
Like other alkanes, gasoline burns in the vapor phase and, coupled with its volatility, this makes leaks highly dangerous when sources of ignition are present. Many accidents involve gasoline being used in an attempt to light bonfires; rather than helping the material on the bonfire to burn, some of the gasoline vaporises quickly after being poured and mixes with the surrounding air, so when the fire is lit a moment later the vapor surrounding the bonfire instantly ignites in a large fireball, engulfing the unwary user. The vapor is also heavier than air and tends to collect in garage inspection pits.

Usage and pricing

The United States accounts for about 44 percent of the world’s gasoline consumption. In 2003 The United States of America consumed 476,474,000,000 litres (476.474 gigalitres), which equates to 1.3 gigalitres of gasoline each day (about 360 million US liquid gallons). The U.S. used about 510 billion litres (138 billion gallons) of gasoline in 2006, of which 5.6% was mid-grade and 9.5% was premium grade.
Western countries have among the highest usage rates per person.
Based on externalities, some countries, e.g. in Europe and Japan, impose heavy fuel taxes on fuels such as gasoline. Because a greater proportion of the price of gasoline in the United States is due to the cost of oil, rather than taxes, the price of the retail product is subject to greater fluctuations (vs. outside the U.S.) when calculated as a percentage of cost-per-unit, but is actually less variable in absolute terms.
Fuel prices have been rising steadily since the start of 2008, especially in the UK , Europe and the USA


When gasoline is left for a certain period of time, gums and varnishes may build up and precipitate in the gasoline, causing "stale fuel." This will cause gums to build up in the fuel tank, lines, and carburetor or fuel injection components making it harder to start the engine. Motor gasoline may be stored up to 60 days in an approved container. If it is to be stored for a longer period of time, a fuel stabilizer may be used. This will extend the life of the fuel to about 1-2 years, and keep it fresh for the next uses. Fuel stabilizer is commonly used for small engines such as lawnmower and tractor engines to promote quicker and more reliable starting. Users have been advised to keep gasoline containers and tanks more than half full and properly capped to reduce air exposure, to avoid storage at high temperatures, to run an engine for ten minutes to circulate the stabilizer through all components prior to storage, and to run the engine at intervals to purge stale fuel from the carburetor.
Gummy, sticky resin deposits result from oxidative degradation of gasoline. This degradation can be prevented through the use of antioxidants such as phenylenediamines, alkylenediamines (diethylenetriamine, triethylenetetramine, etc), and alkylamines (diethylamine, tributylamine, ethylamine). Other useful additives include gum inhibitors such as N-substituted alkylaminophenols and color stabilizers such as N-(2-aminoethyl)piperazine, N,N-diethylhydroxylamine, and triethylenetetramine.
By 1975, improvements in refinery techniques have generally reduced the reliance on the catalytically or thermally cracked stocks most susceptible to oxidation. Gasoline containing acidic contaminants such as naphthenic acids can be addressed with additives including strongly basic organo-amines such as N,N-diethylhydroxylamine, preventing metal corrosion and breakdown of other antioxidant additives due to acidity. Hydrocarbons with a bromine number of 10 or above can be protected with the combination of unhindered or partially hindered phenols and oil soluble strong amine bases such as monoethanolamine, N-(2-aminoethyl)piperazine, cyclohexylamine, 1,3-cyclohexane-bis(methylamine), 2,5-dimethylaniline, 2,6-dimethylaniline, diethylenetriamine and triethylenetetramine.


Many of these alternatives are less damaging to the environment than gasoline, but the first generation biofuels are still not 100 percent clean.

Vegoil and biodiesel to gasoline

XcelPlus Global Holdings working in conjunction with Maverick BioFuels developed the technology in which a fuel compatible with internal combustion gasoline engines is derived from natural renewable oils like soybean, other vegetable oils and biodiesel. Initial marketing efforts will focus on an additive package for converting ordinary Biodiesel into gasoline, adding the Biolene additive package. The additive is expected to be on the market later this year. Home blenders can expect final pump-grade fuel to cost approximately $2.70 per gallon.

See also

portal Energy
gasoline in Afrikaans: Petrol
gasoline in Arabic: بنزين (وقود)
gasoline in Bosnian: Benzin
gasoline in Bulgarian: Бензин
gasoline in Catalan: Gasolina
gasoline in Czech: Benzín
gasoline in Danish: Benzin
gasoline in German: Motorenbenzin
gasoline in Modern Greek (1453-): Βενζίνη
gasoline in Spanish: Gasolina
gasoline in Esperanto: Benzino
gasoline in Basque: Gasolina
gasoline in Persian: بنزین
gasoline in French: Essence (hydrocarbure)
gasoline in Scottish Gaelic: Peatrail
gasoline in Galician: Gasolina
gasoline in Korean: 휘발유
gasoline in Croatian: Benzin
gasoline in Indonesian: Petrol
gasoline in Italian: Benzina
gasoline in Hebrew: בנזין
gasoline in Lithuanian: Benzinas
gasoline in Hungarian: Benzin
gasoline in Malay (macrolanguage): Petrol
gasoline in Dutch: Benzine
gasoline in Japanese: ガソリン
gasoline in Norwegian: Bensin
gasoline in Norwegian Nynorsk: Bensin
gasoline in Polish: Benzyna
gasoline in Portuguese: Gasolina
gasoline in Romanian: Benzină
gasoline in Russian: Бензин
gasoline in Simple English: Gasoline
gasoline in Slovak: Benzín
gasoline in Slovenian: Bencin
gasoline in Serbo-Croatian: Benzin
gasoline in Finnish: Bensiini
gasoline in Swedish: Bensin
gasoline in Vietnamese: Xăng
gasoline in Tajik: Бензин
gasoline in Turkish: Benzin
gasoline in Ukrainian: Бензин
gasoline in Yiddish: גאזאלין
gasoline in Chinese: 汽油

Synonyms, Antonyms and Related Words

alcohol, avgas, benzine, briquette, burnable, butane, carbon, charcoal, coal, coal oil, coke, combustible, crude, crude oil, dope, electricity, ethane, ethanol, ethyl, ethyl gas, fireball, firing, flammable, flammable material, fossil oil, fuel, fuel additive, fuel dope, gas, gas carbon, heptane, hexane, high-octane gas, high-test, illuminant, illuminating gas, inflammable, inflammable material, isooctane, jet fuel, kerosene, lead-free gas, light source, low-lead gas, luminant, methane, methanol, motor oil, natural gas, octane, oil, paraffin, peat, pentane, petrol, petroleum, premium gas, propane, propellant, regular, rock oil, rocket fuel, turf
Privacy Policy, About Us, Terms and Conditions, Contact Us
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2
Material from Wikipedia, Wiktionary, Dict
Valid HTML 4.01 Strict, Valid CSS Level 2.1